
AD A124 261 OPRINT A LISP PIITTY PRINTe POVIOINf EATINSIVI USER I/
..FORMATMCONTRO.,L EEC (U) MASSACHUSITTS INST Of TICH

CAMBRIDGE AIIIFICIAL INTIELLIOINCE L.. R C WAtERS
UNAIASSIFIED SEP 62 All-611A NOCOIS4O'C-451 Fla 14/5 NI.

I~IIII

|I

11111 =

1.1 1.8IIII&IL

11111L25 *Ijj~i.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - 1963 A

UNCLASS I FIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER , 1 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERAIM 611A OL P Ia// /. /.

v=4 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

GPRINT A Lisp Pretty Printer Providing Memorandum
Extensive User Format-Control Mechanism.

£. PERFORMING ORG. REPORT NUMBER

7. AUTHORfa) S. CONTRACT OR GRANT NUMBER(a)

Richard C. Waters N00014-80-C-0505

9 PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency Revised Sept. 1982
1400 Wilson Blvd 13. NUUEROFPAGES

Arlington, Virginia 22209 27 pages
14. MONITORING AGENCY NAME & AODRESS(if different from Controlilna Office) IS. SECURITY CLASS. (of tis report)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 22217 sa. DECLASSIFICATIONiOOWNGRADINGAlntnVigna227SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

i7. DISTRIBUTION STATEMENT (of the abetract entered In Block 20. It dillferet hem Report)

Distribution is Unlimted

I@. SUPPLEMENTARY NOTES qi73
1~> None

C.) 19. KEY WORDS (Coninu, on ,ve,* . -d Ifn.c.ary And identify by block n ba.)

LJ- Pretty Printing . e '
:70 Formatting 1 .. ,.:.'1t:.,'

00

2 , Programming environments -

,m ' =o~~2. ABSTRACT (Continue on , o,.ld* It necessary and Ido.ntf by block .- oupber) ' t t
A Lisp pretty printer is presented which makes ,lt espy for~ uster, io'*cntrol th4format of the output produced. The printer can5be used.'as eAhism fr

printing data structures as well at rgas t s q~S ' two rs

a set of formatted by creating a formatting function foi:l',ift type.2Vfi0n passed
an object of that type, the formatting function creates a'sequence of Oirection
which specify how the object should be printed if it can fit on one lise and ho
it should be printed if it must be broken up across multiple lines. -on t

DD I JAN72 1473 EDITION OF I NOV 65 IS OSSOLETE UNCLASSIFIED
3/11 0:02-014"6601 ,SECURITY CL.ASIIIICATION OF T0NIS PAGE (when Dae 56,04

A simple template language makes it easy to specify these directions. Based on thE
line length available, the output routine decides what structures have to be
broken up across multiple lines and produces the actual output following the
directions created by the formatting functions. The paper concludes with
a discussion of how the pretty printing method presented could be applied to
languages other than lisp.

01to

"allabilitT coaoe
JAill ! 1111e11

to.Ispca

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

MASSACIH USHITS INSTITUTI - OF TIECHNOIOGY

ARTIFICIAl, INTElI LIGENCE ILABORATORY

A.1. Meno No. 611a Revised - September 1982

GPRINT

A LISP Pretty Printer Providing
Extensive User Format-Control Mechanisms

by

Richard C. Waters

ABSTRACT

,'A lisp pretty printer is presented which miakes it easy for a user to control the format or the
output produced. hlie printer can be used as a general mechanism for printing data structures
as well as progranms. It is divided into two parts: a set of firmatting imctions. and an output
routine. The user specifics how a particular type of object should be formattd by creating a
ibrnatting finction for the type. When passed an object of' that type, the fiornmtting function
creates a sequence of directions which specifv how the object should be printed if it can fit on
one line and how it should be printed if it niust be broken up across multiple lincs. A simple
template langnagc inakes it easy to specify these directions. Based on the line lengtli available,
the output routine decides what structures have to he broken up across multiple lines and
produces the actual output fillowing tie directions created by the formatting functions. The
paper concludes with a discussion of how the pretty printing method prcsented could be
ap)lied to languages other than [isp.

'his report describes research done at the Artificial Intelligence Laboratory (f the Masqachisetts Institute of
Technology. Support for the laboratory's artificial intelligence research has bcn provided in part by die
Advanced Research Project. Agency of'the Department of Defense under Office of Naval Research contracts
N00014-75-C-0643 and N00014-80-C-0505.

The views and conclusions contained ii this paper are those of the author, and should not be interpreted as
necessarily representing the oflicial policies. either cxpi?,scd or implied, of the lkpartnient of Defkn, or the
UnileJ Staes Governmnnt.

Waters GPRINT

Introduction
Most pretty printers are used solely for rOI1m1atting program text. They typically operate by reading in a

file of program text and producing a formatted text ile as output. In general, they have built-in knowledge
specifying how each syntactic structure in the programming language should be formatted and do not give the
uscr any significant control over the format of the output produced 1I. 2, 4-91. With such a pretty printer, the
lack of user format control mechanisms is tolerable because in most cases the user cannot define any new
language constructs and therefore the implerentors of the printers can predict in advance all of the structures
which the printer can encounter (and though there is no firn consensus on flow these structures should be
fonnatted it is possible to select reasonably acceptable fiwmats).

Some pretty printers (such as the Lisp printer preseLted here) are used as part of the programming
environment It) display infiniation to the user rather than as text file processors. (Note that an inherent
limitation of such printers is that they cannot operate on parts of a program (such as comments) which appear
only in text files.) 'lese pretty printers do not have to be relegated solely to printing programs. They can be
just as useful for printing data structures. If a pretty printer's use is extended to user defined data structures,
user format control mechanisms become essential because it is no longer possible to predict what structures
will be encountered.

Extending pretty printers to deal with data is important because user defined data structures are central to
almost any program. When debugging a program, a programmer needs to be able to look at various data
items. I-very interactive programming environment supports Ihe display of the simple atomic data values
supported by the language (such as numbers and strings). However, most environments are not prepared to
print out the contents of complex user data structures in any useful way.

User defined data abstractions are typically implemented by combining together primitive data structures
(e.g. vectors, record structures, and pointers). A pretty printer can be extended to deal with arbitrary user
data abstractions by adding print fiormats for each basic data structure. For example. record structures might
be printed as .leV/dljield2 ... > with each field printed on a separate line if the structure cannot be printed on
a single line. Vectors could be printed analogously as ilen iten2 . . .]. Pointers could be printed as '1'
followed by what they point to. Suppose that a user has defined a data abstraction which is implemented as a
record structure with several fields, one of which is a vector of pointers to records. lsing the above default
formats. an instance of this abstraction would be printed as fbllows (assuming that several lines had to be used
to print it).

<field
field
C 0 <field ... >

@<field ... >

Unfortunately, this simple approach is not very satisfactory. The direct display of the underlying data
structure which implements a data abstraction is not liable to capture the user's idea of what the data
abstraction means. I-or example, some components of the data sructurc may not be very impoitvant and
should not be displayed at all. Other kinds of data structure components (for example. circular pointers)
cannot be displayed literally and must be abbreviated in some way. Alternately, it may be useful to print out
some additional quantities whiph. though not actually in the structure, are useful for understanding the
structure (ibr example. the names of the fields or derived values computed from the field values).

A collateral advantage of the rigid output fbrmat inilially proposed is that it can be built into the reader as

well as the printer so that it is posible to recreate a data structure by reading in its printed representatiot. In

GPRINT -2- Waters

order to maintain this readability property when fields are being omitted, abbreviated, and/or added in the
printed represcntations for data structures, the user niu:t be careful to insure that no infiornlation is actually

being lost. and the reader must be modified to tike these special printed represcntations into account. In Lisp
programming environmenLs (for example 1101), this kind of reader modification is usually possible thuugh not
necessarily casy. It should be noted that in general it is much more important to print out a data structure in a
form which can bc easily read and understood by the user than to print it out in a fon which can be read by
the reader.

Another serious problem with the simple output scheme proposed above is that the kind of default
formatting rtlcs proposed almost never lead to output which is aesthetic. '11 visual appearance of a data
structure has a very important effect on its undcrstandability. 'erhaps different delimiters or indentation
would make the data structure more readable. Perhaps the first two fields are closely related and should
always be printed on the same line. P1crhaps the structure as a whole has two quite separate logical parts
which should always be printed on two lines.

In order to deal with these problems. it is csscntial that the user be able to control how individual data
abstractions arc to be printed. Tlie pretty printer for ILisp presented in this paper allows the user to specify for
each type of datta structure both what components to print, and how these components should be foriatted.
If the printer is used as die standard printer. then tie user will be a)le to inspect his data structures and see
Ihem primted out acsthetically at all times.

Pretty priniers are typically conceived of as system utilities for displaying information to the user.
I lowever. a pretty printer can lie much more useful if it can also bc used as an output facility which is called
directl) CI hin user programs. The adantage of this is that it makes available a, new paradigm for specifying
output Ioirmat.

Nost high leel langulges have facilities folr specifying how output is to be formatted on the page (e.g. the
lFortrain FORMAT statenent). li general. thewe facilities are oriented toward printing data stiuctiilcs whose

sh.:pe is known in advance on a page whose width is known in advance. 'here are usually no facilities which
dcd with %ariahility in either the shape of the data or the width of the page. If either of tliesc has to be
i'arameteri/ed, then the programmer has to write code which computes how each particular data structure
should be formatted.

Prelty printers are specifically designed to deal with variability in the data and in the space available.
When using a pretty printer, instead of spcil ,ing a format for die output as a whole. the programmher
specifics individual formals for cach of the intermediale structures which can occur in the ohject to be
printcd. I hes, forimats do not have to he particularly concerned with either the line width or Ihw the
iitrncdiate structures will be combined togcder. When printing a structure, the pretty printer
;uitoijnatically combines the indiidual foniats and decides where to insert line breaks and blank space in
order to make its output fit remlahly in the sp.wc available.

The sectiommi below describe how , partkiular L.isp pretty printer (GPRINT) provides lor user Ionnat control
and diwtss some of the general issucs involved. GPRINI was originally implemented in 1975 its an attempt to
imp r-mc on an earlier pretty printer implkeinted by Goldstein 1.1. Goldstein's pretty printer is one of the
few pretty priters which does include mechanisms providing significant user control over the format
produced. Linf,,tunatcly. the mcchanisms he provides arc at the satne time complex to use and not very
pliwcmful. GPRfNT has been rewritten fuir times most recently in 1981 in acontinuing attempt tocreatea user
cmttmllmhlc pretty printer with very good human engineering.

GPR INr i, s rtt , n Iisp. and %as developed in the context or a L.isp programming environment. The
I.isp language is used in this paper to display parts o the pretty printing alpo ithnm and I isp list- are used in
xamples (f how objects are printed. This is done because Lisp has several features which make the

Waters -3- GPRINT

implementation and explication of a pretty printer particularly easy. However, it should be noted that the
4 idcas emhltdied in GPR IN rare not limited to the I.isp domain. In particular, these ideas grow principally out

of the requirements for a highly inheractive programnning environment, rather than out of die Lisp language.

l',! last sction of this paper discusses what would be required in order to implement a similar pretty printer
for a programming environnent other than Lisp.

An Example
Mfore looking at GPR INT in detail, consider the following cxample. Suppose a uscr has dcfined a data

abstraction called NAMED-FORM with lour parts: a FORM, which is some arbitrary Lisp expression: a ROOT,
which is anl identifier asso'iated with the FORM; a SUFFIX, which is used to disambiguate forms which have

the a ame ROOT: and a PARENT. which is a circular pointer pointing up to the NAMED-FORM data structure which
contains this one. l'ogether the ROOT and the SUFFIX are a unique name for the FORM. The PARENT links
make it possible to So backwards from a NAMED-FORM to the NAMED-FORMs containing it.

'i he unc(tion definitions below implement access functions and a constructor function for this data
absraclion inmpletmeited as a list. Iollowing common Lisp programming practice, the symbol NAMED-FORM is

put ill tie CAR or this fist -4) that instances of the data t pe can be recognized at run time.

(defun form (x) (cadr x))
(defun root (x) (caddr x))
(defun suffix (x) (cadddr x))
(defun parent (x) (car (cddddr x)))

(defun create-named-form (form root surfix parent)
(list 'named-form form root suffix parent))

If nothing more is said, then NAMED-FORMs will be printed out in the default format for lists as follows:

(NAMED-fORM (+ A B) ARG I ...

There are several problems with this. First. there is no good way to print the circular parent pointer (it is
elided as ". . ." above). 'ven if'some mechanism is used to keep the print form finite, it will probably be too
large to be readable. Second, tile CAR of the list is inporlant for computational reasons but it is not a logical
part of the structure. One might well consider that seeing it prinlted out is a distraction. 'Ibird, the way the
remaining three paris of the structure ire printed out does nothing to indicate their logical roles in the

structure. As a result, it is hard to see what is what.

GPRINT -4- Waters

The following example shows one way in which NAMED-FORMs could be more aestletically displayed.

ARGi: (4 A B)

The FORM is printed out preceded by a Lag fi)rled by printing die ROOT and SUFFIX as a singlc unit
fo)l)owed by a colon. Note that you would)t want to store the ROOT and die SUFFIX as a single unit because
it is computationally expensive to break them apart However this is easy for your eye to do. The PARENT
pointer is not printed at all.

The following fi)rmat definition coLild be used to specify to GPRINT that NAMED-FORM should be printed
out in the above way. 'he expression (DEFUN (simbl :GFORMAT) (arg) bod])) defines the body as a
forinatting function which will be used to format lists with the indicated symbol as their CAR. When passed
such a list, the function creates a sequence of formatting instructions specifying what should he printed
corresponding to the list Formatting functions can be quite complex. However, in this example. the
fiormatting function simply selects three of die components of the data structure and calls the lunction GF
(short for GPRINT-FORMAT) in order to create the formatting instructions.

(defun (named-form :Gformat) (x)
(OF "(2 , * : - *}" (root x) (suffix x) (form x)))

1Thie function (GF teniplaieargl arg2 ...) creates a sequcnce of forrmatting instructions for its arguments
based on directions specified by the template. (Tenplates arc discusscd in detail below.) The template in this
example can be understood as follows: Thlie [and) specify that tie components between them should be
treated as a single logical unit when they are printed out. 'Ihe 2 aller the (specifies that an indentation of 2
shotld be used inside this structure if it has to be broken up across multiple lines. The three .s show where
the three components of the data structure should be printed. 'h ': ' specifics that a colon should be
printed after the SUF F IX. Finally, the - specifies a conditional line break. If the whole structre will not lit
on one line. then a line break will be inserted at that point. Otherwise a spacc will he printed.

It is |niport;nt to realize that the fiormat does not just specifv how an individual NAMED-FORM should be
printed in isolation. It is used aS part of the specification of how complex data structures containing
NAMLD-I t)tMs hiould be printed. For example, a list oftwo NAMLO-FORMs would be printed as follows:

(A H1: (+ A 8)
CALER3: (- (+ A B) C))

The example assumes that in order to fit the structure into the space available for printing, it had to be
broken up across two lines. 'lit oternost set of parentheses and die fIct that the two NAMED-FORMs are lined
up l'rtically is conlrolled by the standard format 1ir lists of data. 'llie individual NAMED-FORMs are fonnatted
as specified above.

Waters -5- GPRINT

The Basic Algorithm

The central feature of the algorithm used by GPRINT is that the pretty printing process is dk idcd into two
parts as shown in Figure 1. The normatting rotcine takes in an object and creates a sequence of formatting
instructions specifying what to print. Thes instructions specify how each part of the object is to be printed if
it will fit on one line. and how it should be printed if it must be broken tip across multiple lines. Ibis
information is passed to tie outl)ut routine as a sequence of entries in a queue. The output routine operates
as a coroutine processing the queue entries as they are created. It decides how to fit things into the actual
space available and then prints them.

FORMATTING OUTPUT

OBJECT --- ---)QUEUE ---) ---> TEXT
ROUTINE ROUTINE

Figure 1: Architecture of the basic pretty printing algorithm.

"le importance of dividing the algorithm into two parts conies fron the fact that it allows a complete
separation between Innat specilication and the oulput computation. The output routine is complex and
comlptitation intensive. Taken separately, it can be designed to be efficient without compromising the need
for the lonnatting process to he as clear and simple as possible. Similarly, when designing the fortaltting
routine and te user format control mechanisms it is possible to concentrate on providing a powerful and
convenient interlace to the u.r.

'The basic algorithm de.ribed above has been independently developed by several people [4, 71 in
addition to the author. I lowever. the formnatting routines in these other pretty printers are very primitive.
Ibey include only a small set of canned Innats and do not allow for user format control. In 171. Oppen gives
a lucid description of the way the output routine operates. His discussion centers on the fact that if the
lookahead used by die output routine when proccsing queue entries is appropriately limited, then the
computation time required by the oulput routine is linear in the otmber of qteIue entries created by the
formatting routine. Tbe only diftirence between his output routine and GPRINT's output routine is that
GPR INT's queue entries are more general. '11 paper focuses oil the unique aspect of GPRINT -- the way the
firmatting process allows for uscr format control.

(

GPRINT -6- Waters

The Structure of the Formatting Routine
'Ihei structure of the fontnatting routine is based on die idea that any object to be printed by GPR INT can he

viewed ats a directed graph where each terminal node is a primitive data object (such as a nurnbr or a symbol)
and each non-tcrniinal node is a comnposite data structure (such its a list or array). lhbc formatting routine is
organized around a central dispatching function (GD ISPATCH). At cach node, GDISPATCH select% and calls an
appropriate formiatting function bascd on various features of tie nodec (such its its data type). 1lic formatting
function takes the nodc as its argunnt and pushcs entries onto the qucue which specify what to print and
how it should he Ibriattcd. Typically. fbninatting runctiotis call the dispatching function recursively in order
to format the comrposite components of the node.

Consider the following siniplified version of GDISPATCH. 'I'his version of GDISPATCH assumnes that the
itemi to be formnatted mnust be cither a number, a syrnbol, 1 string or a list. It first tests the data type of the
item. If it is not at list then AT OM- F ORMAI enters it directly into the qlueue as somnething to be printed out. If
the itemn is a list then GOISPATCH looks at the CAR of the l'ist in order to pick a specific fornia(ting fuanction to
call. [hei association between list CARs and forimatting functions is recorded by storing thie funiction ats the
:GFORMAT property of the CAR.

(dofun Gdispatch (x)
(cond ((not (llstp x)) (atomn-formiat x))

((not (symboip (car x))) (funcall Gnon-symbol-car-format x))
((get (car x) ':Gforiat)) (funcall (get (car x) ':Gformat) x))
((fbOujndp (car x)) (funcall Gf'i-format x))
(T (funcall Gsymbol-car-rormat x))))

If there is no special formiatting functioii for a list then GOISPATCH uses either a default fibrinat for
fund lion applications or a formiatter For data lists (1he", formiatters are discussed further below). TFhese defult
hu-iiialteis arc stored in) special variab~les so that they can he easily miodified by tile user. IIIit L isp systemn
theie is no definitive way to distinguish the replresenitation ola function call fronm other kinds ot'list data. As a
hecuristic, GDISPA IFC1 looks to see whether the CAR of tie list is the inme of a currently dclined function.

ihle actual version of GD[SPATCH used by GPR [NT is mutch mnore general thant the onlC presented here.
F~irst. it can dispatch on additional features of it list other than its CAR. Second. you can specify at specific
format, to Use when calling GPRINI which will override any dispatching. Th1ird. GOISPATCH dispatches oni
mai~ns other data types as well ats lists (for example, arrays). 'I'lie user forniat control niechanisins described
here ate extended so that they are applicable to these other data types. Thbis is discossed in inore detail below.

An im iiportant thing to keep in mnind about1 foninatting functions is that they do not print anything -- rather
they speci fy a set oft directions to be fol lowed when GPR tNT prints in object of the associated type. Inotrder to
Print soiethitig you call the futnction PRINT. It calls GDISPATCH which calls lbninatting functions which
create queueW entries which are interpreted by the output routine in order to determine what to prinL It is the
out4p111t loutinec which actually does the printing.

Kow The Quetue Enttries Specify Formatting Options
InI order to hfilly understand how foriats are specified, it is imnportant to understand the entries which are

pI'cl.d onto 11t,: rnlc. Thee etries ate designed to be a concise langutage 1br sIpecilyillg formatting options.
hic entries eI ode two pieces (if intorniation: what should be prinited if an object can be printed on a single
ne. anii V ine breaks and indentationm should be used if the object will not fit on one line. 'lie fiollowing

1 in JsL.. 's Uhe basic cieuc entries.

Waters -7- GPRINI

litleral' - Print the literal text between thc apostrophes in the output.

--t- (Underscore) Print it (default 1) Spaces in) tile OultI)tt. Thew argument can be negative in which case
thle printing point moves left but only if there is sufficient blank space to back uip over.

(it) -T'[hese two entrics mark-4hc beginning and end of a group of queue entries which form a
substructure in thce output. Thbis substructure is treatcd as a single unit when decisions, about where
to insert line breaks arc made. Thei number following the open bracket specifies how much dhe
indentation should bce increased while printing items inside the Substructure whcn they will not fit
Onl a Single line. Ic can he omitted in which case it defaults to thle suH Of the lengths Of the first three
things printed in the substructure.

+1- (Plu1s) Tlis specifies a change in indentation. 'I he indentation level in the current substructure is
incremnented by it (def'ault 1) which canl be negative.

-11 - (minus) A conditional line break. Put a line break inl thle Output if' thle structure immediately
containing this entry cannot be printed onl a single line. Otherwise, print it (default I) spaces inl the
Output.

I - Always put a line break here.

As anl examiple of how formatting information is encoded in queue entries consider dhe NAMED-FORM
example used above. When --PRINT is used to print the list (NAMED-FORM (+ A 8) ARG 1 ...) tile
formlatt ing routine calls the specially defined formatting function (reproduced below).

(defun (named-form :Gformat) (x)
(GF "(2 . ''-*"(root x) (suffix x) (form x)))

liased onl tile template, thle call on GF creates die flollowing queue entries (issuming fOr simplicity in this
example that (+ A B) is toinatted as a single atom).

{2 'ARG' 'I' ': - '+A B)' }

T[he otutput routine processes these queue entries as they are created. It lets the entries corresponding to a
structure collect in tile qutcue until it canl determine whether or not there is enough room to print the structure
on a single line. If the available space is long enough then tile entire structure will be printed onl a single line
as follows:

ARGI: (+ A B)

If there is not enough troom then the structure will be broken uip. '[he - qumeue entry indicates that in this

case a line break should be inserted before (+ A 9). 11wi indentation increment specifies that tile indenitation
should be increased by two after the line break.

ARGI:

- If there is not enoutgh room to print the two line form, then there is no way to print out the structure which
is cotnsistetnt with the queue entries, 'Ibis is anl example of thle fintite line letig/I probkii,. Pretty printers in
general sulfer from this problem and there is no simple solution to it. However, the probletm is usually not
severe as lotng as the line letwih available for printing is several timecs larger than the largest indivisible itemn

wh 3 muth ritdo single line. GPHItNY has a nmuner of built-in features (discussed below) which try

to ameliorate this problem b) keeping the indetntation smnall in order to matximfize the line length available.

GPRINT -- Waters

Formatting Templates
Qucue entrics arc created excIlusively through the use of tile function (GF leinpiate argi arg2i...). GF

niaehes its temiplate against zero ormtorc arguments and produces a scrics of quti ecntries. IFach template is
a string built tip out of formatting codes. Thiere arc two sets of codes. The first set corresponds exactly to the
queue entrics described in thc last section (i.c. IliteralI, -i. (it), +it, -it, and I). Thei sconld set or codes
spccifies how the template is to be matched against tie arguments to be printed. Thiese arc dcscihcbd in the
table below:

*-Call GOISPATCH to determine how to format this Oject. If it is an atoin then this creates a literal
queuie en: ry for it. For example. (GF " ARG) is the saine as (GF "ARG .

I - Ignore the corr'esp~onding object.

[subletnplah'J -TIhe part of thle object being formatted which corresponds to this part of the template
moist be a list. It is decomposed into its elements. The template between the squtare brackets
specifies how these are to be flormiatted. For example, (GF 'L..']" (1 (2 3))) is the
saine as (OF "_-- " 1 2 3). Processing ola stibtemplate between I]terminates immncdiately as
soon as tile corresponding list is exhausted. For example, (GF "[*' '* a]" ' (1)) is the same as
(GF " a' 1) and not (GF a''"1). Thle (I codes have meianing only to GF and do not by
themselves create any queue enitries.

* (eriod) Valid only inside []. It specifies that the next item is thle whole sublist left to proc(ess byii
rather than its CAR. Vor example, (GF " [*-. *]" ' (1 2)) is thle samne ats (GF " *-* I '(2)).

< > - Thiis is used inside of [I to specify a templilte for al list of unknown length. The part or tie
temiplate between the angle brackets is taken ats repeating indefinitely, creating a SUbpatteri of'
inii nite Izuguli. [or example. "[<-> (.]"is the same as"aa_ _a_ a

ni sueihmplatc') -T'his is an abbrleviationl for (11 [Subtil'uplaim') ' b is combines together
thrce ideas. lirst, it specifies that tlie list should he treated as a single strmcire inl the Output.
Sct)[md. it specilies that p~arenthieses should bec printed as delimiters arotind the list. Th'ird, it
spccifies that the list should be decomposed using thle stibtemuplate to specify houm its comoponemtts
should he formatted. This format code is at usefuol abbreviation because many list lbinats share
th10C ideas.

T[he nmber after the open parenthesis specifies the indcentiltionl increment to Ilse in the
stmhstrmctmrc. It can he oiftted inl which caW it def21ulmIS to the Snot1 of thle knrgths of* tlie first three
conicks ill the stmbstnmctmmrc. In this case the first entry is alwalys anl openl parenthesis. TI ypically thle
second cittry %% ill be tie first itent inl dic list and thc third one will be some amount of blank space
afler thle first itein.

- lii cani he used in place ofan argument to any fornmatting code (e.g., } ,+ or).It specifics
thal thle value is to hi: taken from the next input to Q. For example, (GF "A '-#'B" 6) specifies
th-it 0 spices %hould be printed out lictween the A and the 8.

bMnA ' White space cain be iinserted into at template to give it added readability. It has no mecaning iii
the template.

Consider a'gain tile simple template ("{2 o y) Ilse(] in the examples above. 'lite three vs
imitth *mitim~ it lbtree $ViqU , ments to G1 causing GtOtSPAICH to be called on each one ini tum. *'lhc rest ot'the

f rimi e)les directly specify queuie cnitries.

Waters -9- GPRINT

Simple Formatting Functions
Ibis section continues the presentation of formatting templates by discussing several standard L.isp

program formats. In GPRINT die user Ioniat control mechanisms are used to specify all of the standard
program formats. This adds greatly to the clarity of the pretty printing algorithm by separating die format
specification fron dc rest of the algorithm. It also makes it possible fir the user to modify tie way programs
are printed by changing the standard formats. It should be noted that in Lisp. programs arc represenmted as
lists and are treated just like any other data object. All die mechanisms which allow the user to control the
brmat of program lists can be used to control the format of data stru.ttures implemented as lists.

ILisp function applications are traditionally formatted so that they are printed on a single line or, if there is
not enough room. so that the arguments are lined up vertically one to a line. Thc fiolhowing function is used as
the default value of the variable GFN-FORMAT which controls how function applications are formatted. [he
example printout shows how a function application looks when it has too be printed on more than one line.

(defun :Gfn-format (x) (GF "(*_ (a->)" x))

(LIST Y
Z)

The template matches against the list as a whole, printing parentheses around it in the output. 'The
indentation increment is left. unspecified so that it will delaiult to the length of the finction name plus two
(one l'or the open parenthesis and one for the space printed alier die fiunction name). 'Ibis causes the
argunents to line up one under the other. After the function name is printed out fillowed by a space, the
repetitive portion of the template specifies a conditional line break after each argument in the lunction
application. Note that GDISPATCH is called (via the * format code) in mlder to detennine how to forniat each
argument.

Lisp assignments are typically formatted so that each sccessive variable/value pair appears on a separate
line. Ibis can he specilied by using the I fornat c(Ke in a template as shown. '[he following DFUN scts up a
formatting function which specifies that this foirmat should be used for lists which begin with the atom SETQ.

(derun (setq :Gformat) (x) (GF "(*- <*_ t>)" x))

(SETQ Y 1
z 2)

'Ihis template is very similar to the one foir function applications. '[he only difference is that the repeating
portion of the template specifies that the arguments are to be formatted in pairs with a mandatory line break
after~cach pair. 'Ibis forces each pair 'to appear (n a separate line even when the entire SETQ could fit on a
single line. Note that there is no line break before the close parenthesis after the List pair because pricessing
in a subtemplate for a list stops immediately as stx)n as the elements of the list arc exhausted.

GPRINT -10- Waters

The LET construct is used to bind a group of variables to initial value,. and then Ceecute a sequce)C of,
statcnients iii this environment. Typically, the variable binding pairs arc printed one to at line and the
statemnents are printed one to a line. A smnall indentation is uscd for the statcnients in order to visuially
dilfcrcutiatc thcmn from die bound vaiahle pairs and in order to keep the total indentation small.

(defun (let :Gformat) (x) (GF "(2 *_ (1 <*I)) <-*>)" x))

(LET ((Y 1)
(Z 2))

(CONS Y Z))

'Thei temnplate specifies an explicit indentafion of 2 for the statements in the LET. After the atomn LET itself
is printed ouw, a subtcmnplate specifies how the list of bound variable pairs should bc forinatted. Here an
explicit indentation of I is used so that they wilt line Up o11e Under die other. A I formiat code is used to force
each one to appear on it separate line. 'Ilie final repetitive portion of the temiplate as a whole specifies a
conditional line break before each statemeint, inl die LET. Note that if there is only one bound variable [)air
this allows the let as a whole to be printed on at single line if it will fit.

Conditional expressions arc forniattcd so that each clause of the conditional appears on a separate line.
V.ach clause is coinposed of a predicate followed by a sequmence of' statemients. If a clause will not fit onl a

single line, the predicate and statemnents arc printed out one under the other.

(defun (cond :Gformat) (x) (GF (I.<(<*->) I >)0 x))

(COND ((MINUSP Y)
(- Y))
(T Y))

lit this teniplate the repetitive portion of the temnplate as at whole consists of a siabteniplate for the clauses
and a I flormat code which irces each clause onto a separate tine. Tbe subteniplate specihies an explicit
id(ntaw ion of I and at conditional line break after each expression inl the clause.

The following foinmating ronction for MULT IPLE -VALUE -BIND illustrates the use of the + forinat code. In
order to highlight the cliflerence between themn, the forni Which returnlS the mut116ip VaIlues iS; printed at an
indentation of 4 while die statemntts which use die bound values are printed at anl indentation ol 2. 'flie
indentation is initially specified as 4. 'Ihe suiblemplate theni prints out the list of hound vaiables. Afler the
mutltiple valuec returning formn is printed the indentation is decremented by 2. 'ibe repetitive portion of dhe
temnplate then p~rints out the remaining formis one to a linema an indenitation of 2.

(defun (multlple-value-birid :Gformat) (x) (GF "(4.*-. ((..)) - +-2 (-.>)" X))

(MULTIPLE-VALUE-BIND (SYMBOL ALREADY-THERE-P)
(INTERN STRING)

(COND (ALREADY-THERE-P (ERROR "Symbol already there: "STRING)))

SYMBOL)

Waters -11- GPRINT

As a Final example. consider the function QUOTE. A list which begins with the atom QUOTE is not printed
Mith parenthes around it. Rather, the argument to QUOTE is printed out following a . '1lie example
shows the way the list (QUOTE A) is Iormatted.

(derun (quote :Gformat) (x) (GF "* 1. [I]" x))

'A

ie tenplatc sets up a substrutulre and prints a .. (inside of a literal in a template, ' . stands for ...).

It then print-; out the argument to QUOTE. Note how it uses the format codes [] and I in order to select out
this argument.

More Complex Formatting Functions
A wide variety of fonnats can be spccified using simple formatting functions like those above which

contain only a single call on the function GF. However, these formats are restricted in several ways. In
particular, with these simple formatting functions it is not possible to vary the fonnat based on the actual data
valuest in a structure. More complex formats can be specified by taking advantage of the fact that a formatting
fihnction can conlain arbitrary computation.

For example. consider the following way in which the fonnat for NAMtEI)-FORMs could be extended.
Suppose that the suffix field in a NAMED-FORM is optional and that a value of NIL indicates thai there is no
suffix. In this case we do not want to print tie suffix at all. The example shows how the list
(NAMED-FORM (+ A 0) ARG NIL .. ,)shouldbeprinted.

(derun (named-form :Gformat) (x)
(GF "f2 *" (root x))
(cond ((not (null (suffix x))) (GF "o" (suffix x))))
(GF "':'-*)" (form x)))

ARG: (+ A B)

In the above format definition the single template used in the format definition in the beginning of this
paper is broken into three pieccs. A conditional test is inserted so that printing of the sulfix only occurs when
it is non-nLll. The { and) indicating the beginning and end of the substructure of queue entries being
created arc spccilied in separate calls on GF. rhis is a common occurrence and is in contrast to [J
(and therefore ()) which must be properly nested in a single call on GF.

01 all of the formats in this paper, this is perhaps the best example of the way GPRINT is typically used.
Some simple templates are combined with some simple computation in order to define a flexible and
aesthetic fornat fbr a data object.

GPRINT -12- Waters

Block Form and Tabular Form
In order to save space, long lists of data arc often formatted in bhwk fonn where as many itenis as possible

arc put on each line. Ihe language Which is used to create formiatting templates has two format codes which
arc useful for specifying this kind of format.

I',- (Cornia) A line break is inserted here if and only ii'thlc structure immnediately following this code
will not fit onl tie cnd of die current line. Otherwisc it (default 1) spaces are printed.

11 - (Semnicolon) 'I'lis is the same ats thc comima thrniat except that additional spacing is inserted so that
thc itemns printed out line tip in a tabular ilshion. TIhe argumnent it specifies what spacing to use
between the columins inl the table. If it is oinitted a defautlt value will be chosen by tile Output
routine based oil the lengths of the itemns to be printed out.

Ihe following formiatting function can be used to print out a list in block formn.

(dofun :Glblock (x) (GF "(I <*.))" x))

(ORANGE PEAR (RFD APPLE) GRAPEFRUIT
(11AWAIIAN PINEAPPLE) BANANA
CANTALOUPE POMEGRANATE TANGERINE)

There is a problem with printing lists of data in block rorniat. If the elements of a list are themselves lists
with a depth of greater than one, then the output is not very aesthetic because it is not easy to) identify the
elemients of the top level list. For examptle.c consider thle tRillowhxg tic.t:

((ORANGE (SELL 3)) (PEAR (BUY 10)) ((RFD APPLE) (BUY 5))
(GRAPEFRUIT (lilY 10)) ((HAWAIIAN PINEAPPLE) (SELL 8))
(BIANANA (SELL 5)) (CANTALOUPE (BUY 4)))

The lidllolwing formnatting tu1ncti0n uses t1he Semicolon format code in order to print out lists in a tabular
fornat. It is tised ats thle deftult value of the special variables GSYMBOL -CAR -FORMAT and GNON-SYMBOL-
CAR-FORMAT which cotolt- how lists of data are printed. Ibis makes the output mnuch easier to read without
taking tip very nitich more space.

(doftin :GlTblock (x) (GF "1(1 <*;>)" x))

((ORANGE (SELL 3)) (PEAR (BUY 10))
((tRFD APPLE) (BUtY 5)) (GRAPEFRUIT (BUY 10))
((tIAWAITAN PINEAPPLE) (SELL 8))
(BIANANA (SELL 5)) (CANTALOUPE (BUY 4)))

l)uc ito (lhe fact that the output routtine uses only limiited look athead, thle tab sizte must usually IV chosen
before ill of thc elements in the list have beemi entered in the queuec. As at result, it is niot guaranteed to be
large eniough. In this example, the fourth element in the list was not completely entered in the queue at the
time when it wals deiennincd that the list had to be puit onl more than one line. As a result, only the first three
clemnents were uised to deternline the tab size which tuned out to be too smiall to acconmmodate the fifth
element.

Waters -13- GPRINT

Functional Subtcmplates
'Ilhe following fimat codes increase the flexibility of the templatcs by making it posible to call functions

at diflrent points in a template.

.f- This specifies that the function f should be called in order to format the corresponding item. The
end of the function name is delimited by a space.

Sf - (Dollar sign) This command specifies dat GOISPATCH should be called in order to format the
corresponding itcm, but that thc function f should be passed to GOISPAICH as a suggestion of how
to firmat the item. As above, the end of the function name is delimited by a space. The difference
between Sf and %J" is that with Sf GDISPATCH gets control. As a result, if the item is not a list, then
the functionf will not get used.

The use of the $ code is illustrated in the following format which block firmats a tree at all levels. It is
capable of forniatting trees of arbitrary depth because it explicitly calls itself recursively. GDISPAICH is called
at each level of the recursion. As a result, as soon as an atom is encountered, the recursion is terminated and
tie atom is printed normally.

(defun :Gblock (tree) (GF "(1<$:Gblock ,>)" tree))

(ONE (TWO THREE)

((FOUR FIVE) SIX
SEVEN)

EIGHT NINE)

The following formatting function for PROG use-, % so that it can call a subfomat (GPROG-FORMAT2)
withoul GOISPATCH being called. This is necessary so diat the labels (which are atoins) in the PROG will be
processed by GPROG- FORMAT . Labels are printed elt shifted by computing negative argumlents for-.

(declare (special Gwas-label))

(defun (prog :Gformat) (list)
(let (Gwas-label)

(GF "(*_$:.Gblock <%Gproq-rormat2 >)" list)))

(defun Gprog-format2 (item)

(cond ((not Gwas-label) (GF "11)))
(cond ((atom item) (setq Gwas-label T)

(GF "-#*_" (- (1+ (flatsize item))) item))
(' (GF I'*" item) (setq Gwas-label nil))))

(PROG (RESULT)
L (CONO ((NULL LIST) (GO THE-END)))

(SETO RESULT (CONS (CAR LIST) RESULT))
(SETQ LIST (CDR LIST))
(GO L)

• .THE-END (SETQ RESULT (NREVERSE RESULT))
(RETURN RESULT))

An important aspect of the last example is the way it interacts with length abbreviation (described below)
and other standard facilities prov ided by GPR INT. Since length abbreviation is implemented by C]. in order
to get length abbreviation to apply to the formats you write, you have to use []. This is an bnportant reawn
for writing it in the bnrn given above rather than as a single routine containing a loop which decomposes the
list itll':and creates the correct format codes.

GPRINT -14- Waters

Miser Mode

GPRINT provides several facilities which help deal with the finite line length problem. 'Ilic most

comprehensivc of these is a modified form of the miser mode supported by Goldstcin's pretty printer 131. The

point at which miser mode is triggered is controlled by the variable MISER-WIDTH (which defaults to 4)). If

the line width available for printing is les than MISER-WIDTH. then miser mode is triggercd, and Ibrinatting is

modified in two ways. First, all indentations inside (} formats are forced to be I no matter what is specified.

Second, all + formats arc ignored so that the indentation remains I in each substructure. In addition to this, a

formatting command (M) is provided so that the user can specify line breaks which should only happen when

miser mode is triggered.
M - A line break is inserted here if and only if the containing structure cannot be printed on one line.

and the width available for printing is less than MISER-WIDTH.

-it - (Tilde) Print it (default 1) spaces in tie output. 'Ilic argument can be negative in which case the

printing point moves left if there is sufficient blank space to back up over.

_n- (Underscore) 'Ihis is actually an abbreviation for -iM. It therefore specifies a miser mode line

break.

In order to see how miser mode works, consider the format for MULTIPLE-VALUE-BIND reproduced

below. The example shows the fornat which this specifies in miser mode. The indentation increment is

reduced to a constant 1, and the occurrences of.. lead to line breaks when rnisering. The same ell-ctts can be

seen in the COND.

(dofun (multiple-value-bind :Gformat) (x) (GF "(4* (<*_>) -. +-2 <-.))" x))

(MIJULIPlE-VALUE-BIND

(SYMBOL ALREADY-CHERE-P)
(INIERN STRING)
(COND
(AI.READY-THERE-P
(ERROR
"Symbol already there:
SIRING)))

SYMBOL)

In order to maintain some of the indentation pattern of MULTIPLE-VALUE-BIND in miser mode, the -

format code tould be used in place of_- and + as shown below.

(dfun (multiple-value-bind :Gformat) (x) (GF "(2.- ((*-)) - -2. (-*))" x))

(MILTPI.E-VALUE-BIND (SYMBOL
ALREADY-THERE-P)

(INTERN STRING)
(COND
(ALREADY-THERE-P
(ERROR
"Symbol already there:
STRING)))

SYMBOl.)

lhr gh .udicious choice of when to use - instead of - or +, the user can gain considerable control over

how a forin.t will look in miser mode. I However, as can he seen above, miser mode is not particularly

tvsiht.tic tit) multei what you do. It exists solely as an emergency measure to prevent printout from

o crruinning lie right margin.

Waters 1-GPRINT

L~eft Shifing of Major Units
Another way in which GPR I NT deals with the finite line length problem is to Like logical units of progiai

text (such as LETS, PROGs, and DOs) anld shift thcem left in order to increase the amouint of line width available.
'lI'is process is triggered when thc line width available for printing is less than MAJOR -WIDTH (whichi defaults
to 40). lI di shifting is illustrated in thc example below. T'he radical reduction in itclcntation is very efl'ectivc
at increasing the width available. Unfortunately, the nonstandard format reduces readability. Ib'is problem is
ameliorated by the fict that an entire logical unit is being left shifted, not sonie arbitrary part ol'the program.

(defun (lot :Gformat) (list)
(Gcheck-indentation list

#'(lambda (x) (GF 1"(2 *-..(1 <*I>)<-*>)" x))))

(defun Gcheck-indentation (list format-fn)
(]et ((ind (Gestimate-indent)))

(cond ((> (- Glinelen ind) major-width) (GF "U#" li1st format-rn))
(T (GF "1-#'; -----------. ' jI " (- ind) (- d 11.)

(GF "'-#%#" (- 5 ind) list format-fn)

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(CONI3 ((NOT (ZEHOP A))

(LET ((DISCRIMINANT 8-(B) (S4 A C))))
(COND ((PLUSP DISCRIM4INANT)

(LEI ((TERMI 0-))
(TERM2 (SORT DISCRIMINANT))
(TERM3 (o 2 A)))

(LIST (I(+ JERMI TERM2) TERM3)
(I (ERMI TERM2) TERM3)))

I ell shifting is implemiented by the forniatting function GCHECK-INDENTAT ION. Tlhe use of this function
is illustrated by (the formatting Function for LET shown above. It calls, GCH'ECK- INDENTAT ION passing it tie
simple fornialting function for LET which was described in the beginning of this paper.
GCHLCK -INDENTAT ION calls the ftunction GEST IMATE -I [NOE VTI[ON which looks at the Qtueue of formiatting
cominands and dctermines what indentation will he used when printing out the LET1. Note that this must be
computed from the queuec because there may be many entries in the queue which have not yet been printed.

If' the width available for printing is greater than MAJOR -WIDTH then GCHECK- I NENTA lION just calls the
fornatting flinction passed to it. (Note that if the & lbirnat code was used instead of%, GDISPATCH would
think that it was encountering a second (circular) reference to the list being printed and abbreviate it as
described in the next section). If the width available is less than MAJOR-WIDTH then GCHECK- INDENTATION
spaces bacwk to column z.cro and prints a comment line which indicates that left shifting is ccurring using a
" I" to show the indenltationl which otherwise would have been used. On the next line, thie format spaIces back
to column 5 and calls the formatting function passed to it in order to format the list being printed. Finally, it
prints another comment line. Note that the templates nmake heavy use of the # format code si that the
function can compute the appropriate negative spacing.

GPRINT -16- Waters

Abbreviation

GPRINT provides several different abbreviation mechanisms. First, there is abbreviationt based oin
PRINLEVEL and PRINLENGTH as in the standard printer. A "-s" is printed for structures which are too (deep.
and ". . ." is printed in place of the ends of lists which are too long. 'llhc following examnple shows flow the
list (1 (2 (3 (4))) A B C) would appear with PRINLEVEL and PRINLENGTH both setto 3.

(1 (2 (3 ..)) A..)

Tlhere is a separate abbreviation faicility based on tie valiablcs PRINSTARTLINE and PRINENDLINE. As
GPR [NT prints, it counts the lines starting with zero for the line die p~rintcr is called onl. While hc line numlber
is less than PRINSTARTLINE no actual printing is done. If the line number ever becomes greater than
PR INENDLINE, then the printer prints -- "to indicate that truncation has occurredl and imnnidliately stops
printing and returns nornially. lVxperimetitation has shown that setting PRINENOLINE to a relatively small
number like 4 (wilii setting PRINLEVEL aiid PR1NLENGTHII o NIL) is very useful particularly duec to the
availability of' the continuation facilities described below. [he example below shows how anl example of
output using thcsc settings.

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(COND ((NOT (7EROP A))

(LET ((DISCRIMINANT 8-() (* 4 A C))))
(COND ((PLUSP DISCRIMINANT)--

'lruiicatioi of the output can also) be triggered by typing TERMINAL STOP-OUTPUT. This interrupts the
printer immediately, causing it to terminate returing normally.

Whenev'er output is abbreviated due to) any of the methods described above. GPR IN T retmerntbcrs the state
of the printirg so that it can be resumeld. Only a single variable is maintained so that only the most recently
abb rei. Ied tli ing is remembered. I'prinfing was truncated by PHIt NENDLIN[or user inlertention. tlhen it can
be c(,IiIIued hrn the point ul'rtucation by typing IF RRINAL RESUME.

As an addlitio~nal featuire, you canl reprint the last abbreviated thing inl full with PitI NIEVEL. PitI Nt INGTH,
PRINSIARII INE. and PRINENIDLINE abbreviation disabled by typing TERMINAL 1 RESUME.

As a I hird kind of abbreviation. if the variable GCIiECKRECURSION is T then GPRINT checks far circularity
inl dt objects it is printing. When a circular reference to) anl object is encountered, it is replaced inl the outpt
by 'n, or 'An. %n, is only used in a list. It is used when the COR of a list is EQ top an earlier CDR in thie stam'w list.
Ini this case j) is the number of CDRi separating the two positions. An1 is used in other situations. Here, ne
indicates that nt selector operations (CAR. CXR, AREF; but not CDR) were performed between the first
occurrence offthe object and this one. 'I'is kind of abbreviation is illustrated below.

the result of (LET ((X I(Y (Z I Z 3) 4)))
(RPLACD (CDR X) (CDR X))
(RPLACA (COAOR X) X)
(RPL.ACA (CODADR X) (CADR X))
(RPLACD (COOADR X) (CDADR X))
X)

prints as (Y (Z A2 Al . %2) . %1)

It is po0iblo (bitt not casy) to reconstruct the exact shape of the object fromn whit was printed. I lowever.
t11C lilditi purlpose is jtst to pfrit sontething more readable thani what you would otherwise see. An iunporint
feattsiic1Vth waty this abbrevimnion is done is that it is completely orthogonal to thc irst of the rurniatllgu~
prmcvm sip that it w(orks no matter what kinds of user formlatting runctions arc written, and no) matter What
kind of data objects atrc bing printed.

Waters -17- GPRINT

Data Types Other than Lists

In addition to lists, GPRINT has built in formatters for all of the standard Lisp data types. Symbols.
numbers, strings, and things of random types not specifically discussed below are treated as indivisible atoms

and printed in the standard ways.
Named structures. entities, and instances arc printed in one of two ways depending on whether or not they

know how to fnnat theiselves. If the object accepts the message :GFORMAT-SELF then GPRINT sends a
:GFORMAT-SELF message with the object as argument to thc object so that itcan format itself.

If the named structure, entity, or instance does not take a :GFORMAT-SELF mesage, then GPRINT treats it
as an atomic object and lets the standard printer print it. ''his makes it possible to use GPRINT on these
objects without having to write formatters for them. However it should be noted that since they are treated as
atomic objects, no fbrnatting occurs inside them no matter how large their print form may be. For example.
a line break will never be inserted inside one.

If an object is an array (and not a named-structure) it is formatted as follows. GPRINT first checks to see if
there is a formatting function for the array. 'The association between formatting functions and arrays is
maintained through a list of flunctions stored in the variable GARRAY-FORMATTERS. These functions arc just
like the formatting functions described above except that in addition to creating queue entries in order to
format an object. they must also lest to see whether they are applicable to the object. This makes it possible
for the user to use any kind of applicability test lie desires. If tie format function is applicable it should
format the object and return T. Otherwise it should take no action and return N IL. A lunction is set up as an
array Ibnnatter by adding it to the list GARRAY-FORMATTERS. GPR[NT calls each o" these functions in turn
passing it the object. As soon as one of them 'returns T it stops. lithey all return NIL then a default frinatter
is used.

The default array formatter first prints out the array object in the standard way (e.g. as an atom containing
the type and the address). Next. if the variable GPRINT-ARRAY-CONTENTS is T and the array has only one or
two dimensions it prints out the contents of the array. The contents are printed as a list (for one dimensional
arrays) or a list of lists (for two dimensional ones). Tabular blocking is used to format these lists.

'llc kind of arbitrary user specified dispatching supported for arrays is also supported for lists. Functions
put on the list Gt IST-FORMATTERS can be used to associate fornats with lists when the association is based on
some feature other than the CAR of the list. Similarly, functions pit on the list GSPEC IAL-FORMATTERS can be
used to override all standard dispatching including the initial split based on data type.

Applicability to Uinguages Other Than Lisp

It is important to note that. though the discussion above was cast in the donain of tie Lisp language, the
ideas arc substantially programming language independent. It should be possible to use these ideas to

construct a flexible pretty printer allowing significant user control of format in any programming language
environment.

GPRINT makes it possible for the user to control the format of both programs and data. Of these two
capabilities, the control over program format is the easiest t) export to other language environments. Two
basic things are required: a representation for program parse trees, and a method whereby die user can
specif' fbnnats fbr non-tenninal nodes in these trees. In languages like Lisp where a data representation for
parse trees is part of the definition of the language. this is the logical choice for die rcpresntation. In other
lauugimager sonic such representation has to be developed. If the pretty printer is intended to accept program
text fik. as inputl, a parer loir the lunguage has to Ih implemented if one is not already available.

lhere are t~o hask: ways in which user foruat control can be supplied. One way is to use the same

GPRINT -18- Waters

mechanisms which are supplied for specifying data formats by simply applying them to the data

representations for parse trees. Tbis is the approach taken by GPRINT. Another approach is to follow the

suggestion of Oppen 171 and allow the user to specify formats as annotations to the grammar for the
programming language. From the point of view of impleientatiton. this approach is essentially identical.
I lowever, for a language which (unlike Lisp) has extensive syntax this approach would undoubtedly be
aesthetically superior since it uses standard grammatical notation in order to communicate with the user
instead of sonic ad hoc internal representation.

Using GPRJNT's approach to the printing of data in other programming environments is more diflicult.
'le key issue is being able to obtain data type infonation at print time. Ilowever, before looking at this
problem in detail consider soeIC other issues.

The formatting templates described above could be used with any kind of data. 'J'e only thing which has
to be changed is that [has to be extended so that it can decompose other composite data structures besides
lists. ILogically there is no problem since, in general, any data structure has a default linear ordering for its
componcts. From an implementation standpoint, there is no problem with selecting out components one at
a time as long as you can detenine the data type of a given structure.

The basic dispatching scheme presented above can be straightforwardly extended as long as type
information can be obtained. It is easy to implement an association between types and formatting roiuti, es so
that each type could have its own foriat. Further dispatching on subfeatLrcs of individual types could be
implemented if desired.

In a language environment such as L.isp where, in general, complete run time type information is available,
it is tri ial to delennine the type of something when it needs to be printed. Unfortnately, in nwst l;nguages,
much o)f thildata type information is used only by the compiler and is not available at run time. It a language
with pure strong typing that makes it possible for the compiler to determine the exact dati type of every
variable, the compiler could be straightforwardly modified in order supply the type ilbnnation needed by
the dispatL'hcr. One way to do this would be to have the iompiler create a table of type in formation which
ctuld be ref'rred to by the dispatcher at run time. Allcrnately. the dispatching needed fir individual calls on
the printer could be perlionned at compile time using die compile time type inf'onnation. In order to make it
possiblC for die user to interactively request the printout of various data items at run time, the tabular
approach would be required. just as a dynamic debugger has to have access to the compiler's symbol table in
order to isc the programmer's variable names.

Untirtuna(cly. few languages have pure strong typing. Most languages support data types such as union
types and variant records. Most of the time. this need not be a severe problem because such tyls are not
utseful unless there is some way for programs to determine what the actual type of a data item is. For
example. the compiler could specify to the dispatcher that a given data item was of a particular union type.
The programmer would have to supply a decision procedure which could be used by the dispatcher t
determine the: exact type ol'the data item at run time. This would not be a difficul task as long as the union
type was straightforward and a single decision procedure for die union type could be iiplcmented which

w)uld work in all situationo.
There arc language environments (for example assembler language) which have little n time type

if'rmmiation, c; k ompile time type constraints, and where the user defined data structures arc (oflien ol such
a chaotic nature that it would be virtually imtossible to write the kind of data type decision prticedurcs
needed by the dispatcher. In such a situation, the kind (f pretty printer presented in this paper would not be
macilf-i. It should be noted that such an uncontrolled emironmcnt presents a number of problems mmirth
more serious th.mi the inapplicability of this kind of pretty printing. Current trends have been toward miore

regularized envirotments which should be able to support a pretty printer like GPR INT.

Waters -19- GPRINT

Conclusion
GPRINT includes a large number of standard formats and features (such as the ones used as examples

above). As a result, a user does not havc to write any of his own formats in order to get reasonable output in
ordinary situations. Ilowever, no amount of anticipation can satisfy every user. Tlhis is particularly true when
a pretty printer is being used in an interactive programmnrn 6 environment to print data as well as programs,
and when it is called by user programs as well as by the system itself.

I'lie principal goal of the design of GPR INT has been to produce a system with good human engineering
which gives the user powerful facilities for controlling the format o "output and which at the same time makes
the specification of simple formats simple. Two key ideas comprise GPR I NT's approach to this problem: the
basic algorithm chosen, and the existence of multiple levels at which a user can specify formatting
infionnation.

'lhe key features of the algorithm underlie the basic simplicity of GPRINT's approatch and. at the sae
time, fundanentally limit its scope. The division of the algorithm into two pieces communicating through a
queue makes it possible to separate the simple parts of the algorithm from the complex ones. The decision to
use a linear time algorithm in the output routine makes it possible for GPR INT to run with acceptable speed.
I owever. it findamentally limits the kind of formiatting decisions which can he made by the output routine.
In particular, when making its decisions, it can only look ahead a very limited disLince. An example of this
was discussed in the section on tabular form output.

In line with the limited abilities of the output routine tie queue entries are designed so that they encode
cssentially only two lbinnatting options for a given structure: how to print it on one line, and how t) print it on
miiultiple liles. (A third miser fibnnat is also specified for each structure, however, this forinat is largely
implicit and the user does not have very much control over it.) This design is at important basis for the
understandability of the printer because it presents the user with a simple model of how tinnatting decisions
are made. I lowcver, one could easily imagine wanting to specify more complex formatting information. For
example. one might want to speci ' two completely different miulti-line formats: one to list when there is a lot
ofroom available and the other to use when there is only a little space.

The printer provides three basic levels at which a user can specify formatting information. Iirst, he can
simply use the defatlt ronnats supplied with the printer and does not have to do anything himself. Second,
he can use simple templates. These make it very easy for him to describe certain aspects of how a structure is
tt) be fiomnatted. Third, he cau write more complex formatting functions. 'lliis allows him to exercise much
more control over the format t,) be used, at the cost of greater complexity.

The use of multiple levels of interaction is a generally useful techniquc for increasing the
understandability and availability of a system to a wide range of users. It makes it possible for users who have
simple needs to satisfy them without having to learn very much about the system. Users who take the time to
learn more can theni do more.

f.

GPRINT -20- Waters

References
[I1I Conrow. K., and Smith, R.Cj.."NEAIVR12: A Pl/l Source Program Rctrmattcr".CACM V13 #11,

Novemiber 1970. 069-675.
[21 I onzcani-Gouge. V. et al, "A Structurc-Oricnted Program Plitor: A First Step Towards; Conmputer

Assisted Programming", Proc. lnicr. Computing Symp.. Antibes 1975.
131 Goldstein. I., "Pretty Printing, Converting l ist to linear Structure". M1'17/AlI/M MO-279. Fecbruary 1973.
141 [learn, A.C. and Norman, A.C., "A One-Pass Pretty Printer". Report UUCS-79-112, Univ. of Utah. Salt

L ake City, Utah, 1979.
[51 tHcura%, J., and Ledgard. H.. "An Automatic Fonnatting Program fior Pascal", SIGPLAN Notices V12 #7,

Juily 1977. 82-84.
161 McKccnian. W. "Algorithm 268. Algol-60 Reference Language I-Alitor [R21", CACM V8 #11,I November

1965.,667-669.
[71 Oppcn, D).. "Prcttyprinting", ACM Transactions on Programming Languages and Systems, V2 #4.

Oc tober 1980, 465-483.
[81 Scowen, R. et al, "SOAPI - A Program Which Documents and Edits Algo6O Programs". Comput. J. V14

#2, 1971, 133-135.
191TIcitlebainn, "'I'lic Cornell Program Synthesizei". Tech. Rep. 79-370. Dept. of Computer Science,

Cornell Univ., 1979.
1101 Weinreb, D)., and Moon, D).. "Lisp Machine Manual". m rT Al Lab.. March 1981.

Waters -21- GPRINT

Maclisp Compatibility
The discussion in the main body of this paper is couched in tenns of .isp Machine Iisp, howe or. GPR IN r

is substantially Maclisp compatibic. Almost everything above applies equally to both versions. 'Ibis section
disLusses the few differences between the two versions.

The I/O in Maclisp is quite different than on thc lisp Machine. The Maclisp vcrsion follows all of the
Maclisp convcntions. In particular, you can call GPRINT with a list of filcs and default output is controlled by
the variables TYO, AR, AW, OUT F ILES, etc.

lhe compilation environment is somewhat different in Maclisp. GPRINT must he loaded in in order for
fionnatfing functions to compile correctly because GF is a macro. On the I.isp Machine you don't have to take
any special action in order for this to be the case when you are using GPRINT. In Maclisp you have tA) make
sure that it is loaded into the compiler by aDECLARE in any file which defines formats. Also note that in
Maclisp the functions which take optional control parameters (eg GPRINT. GPRINTI, GPRINC, GEXPLODE, and
GEXPLODEC) arc lexpis and need ,LEXPR declarations.

In Maclisp, the functions triggered by TERMINAL STOP-OUTPUT and TERMINAl. RESUME are triggered by
typing control characters. The printer can be stopped by typing AS. Printing can be resumed by typing AC

(VR in TOPS20 versions). Reprinting in liull is triggered by Ap. In Maclisp these control characters are not set
up by dclhult. You have to call the fuinction GSET-UP-PRINTER in order to get them defined. Note also that
in Maclisp, the default symbol fir depth abbreviation is "" instead of"..".

The Maclisp version of GPR I NT supports the finnatting of hunks. Two basic mechanisms are supplied
analogous to the ones described for arrays in the main body of the paper. If a hunk is a USRttUNK which takes
ni ssag(s (note that EXTENDs and the like are all USRHUNKs) then GPRINT checks the messiges it accepts. If it
takes die me~sage :GFORMAT-SELF then GPRINT scnds a :GFORMAT-SELF message will the object as
argulent to thc object so that it can fonnat itself. Ifa USRHUNK does not take a .GFORMAT-SELF message, but
it does Like a :PRINT-SELF or PRINT inessage then GPRINT treats the hunk as an atomic object and lets the
standard printer print it. If a USRIIUNK does not accept any of these messages, then it is treated as an ordinary

hunk.
In order to format an ordinary hunk GPRINT first checks to see if there is a formatting ftmction for the

hunk. The user sets up a hunk formalter by adding a function to the list in the %ariablIe GIUNK-FORMATTERS.

The purpose of this function is two fold: to test whether it is applicable to a hunk (in which case it returns ')
and in this case to actually Irmat the hunk. GPRINT calls each of these functions in turn passing it the hunk.
As soon as one of them returns T it stops. If they all return NIL then the hunk is printed by default in the
nomial way (e.g. in parentheses with tie CXRs sparated by periods) in block format.

GPRINT -22- Waters

Functional Summary
This appendix describes all of the user finctions supported by GPR INT.

GPRINT object &opt l on a stream fornat level length epidline slarline
'Ibis is exactly analogous to PRINT except that it does pretty printing. 'llhe first argument is the object
to be printed. ile second argument specifies the stream to use for outpuL If it is missing then the
standard system default is used (e.g. STANDARD-OUTPUT).

The third argument is a formiatting Function which defaults to NIL. If non-NIL it will be used by
GOISPATCH to formiat (he object. For example. (GPRINT FOG STANDARD-OUTPUT ':GFN-FORMAT)

will use functional format for the top level of FOG no matter what the CAR of fix) is. The last four
arguments can he used to control abbreviation. They are used to set the values of PRINLEVEL.
PRINLENGTH, PRINENDLINE, and PRINSTARTLINE respectively. If they are omitted, then the current
bindings of these variables are used to control abbreviation.

GPRINT 1 object &opt i onal stream fornat level leigth endline shtrtline
This is exactly like GPRINT except that it corresponds to PRINI instead of PRINT. (Unfortunately, the
standard Maclisp grind package has already used up the name GPRINI.)

GPR INC obic(' &opt ionai strcamfonnal level lngth endline stardline
Ibis is exactly like GPRINI except that it corresponds to PRINC instead of PRINT.

PL obict &op t i on a I sireaonfitrnat
Ibis is an abbreviation for (GPRINT obj ectfileformat NIL NIL NIL NIL). It specifics that the object
should be printed without abbreviiation. It is quite handy at top level.

GFORMAT sir(am template &rest args
'his is just like FORMAT except that GPR INT is called to do the printing and the temphte has the same
fiorn its a template for GF. For example. (GFORMAT NIL "(.,_<-)" X) creates a string containing X
printed in Functional formal at the top level.

GEXPLODE object &opt i anal]bnnat level length
This is analogous to the ftnction EXPLODE except that it does pretty printing.

GEXPLODEC object &opt ianal format level length
Ibis is analoguus to the function EXPLODEC except that it does pretty printing.

PLP "e &rest args
Ibis is very similar to GRINDEF but calls GPR INT. Fach arg is either a symbol or a CONS of a symbol

and a list of specilic properties to print. Ifit is a symbol then any propertics it has which are in the list
PLP-PROPE:RTIES are printed. Otherwise, the specified properties are printed. If no args are supplied
then PLP is rcexccuted on the last set ol'args it was called on.

GSET-UP-PRINTER

('allinz this sets up GPRINT as the top level printer. TIis consists basically of just setting the variable
PRINI to)GPRJT 1.

Waters -23- GPRIMT

GF letnplale &rest args
This is used to define formatting functions. '1be structure of the tepiplaie is summarized in a separate
appendix. Note that unlike GFORMAT this does not actually print anything. Rather, it just makes queue
entries when the formatting function it is in is called by GDISPATCH. The fact that GF is a macro saves
time by parsing the template at compile time, and producing efficient code to do the formatting. 'Ibis
does waste space however. It is to your advantage to make each template as short as possible.

GFUNCTION template
This is an abbreviation for # (LANBDA (X) (GF template X)).

FORMAT streamfrinat-string d rest args
A new format keyword -N is defined so that you can call GPRINTI from FORMAT. -: N invokes GPRINC.
Numeric pre-arguments are taken to be PRINLEVEL, PRINLENGTH, etc.

GPRINT .24- Waters

Variable Summary
'Ibis appendix summarizes all of the control variables which can be set by the user in or-der to control the

actions of'GPRINT.

PR INLE NGTH syslein defined default
'Ibis specifics the maximum length list that will be printed without abbreviation. NIL1 means Infinity.

PRI MIEVEL syslein defined defliull
Thbis speciflcs the miaximnum depth at which any object will bc printed. NIL Means infinity.

PRINSTARTLINE default NIL
Output is inhibited until the PRINSTARTLINEth line is reached. NIL is the same asO.

PRINENDLINE default 4
Output is aborted and the printer returns nonnally as soon as the PR INENDLINELII line is reached.

PRINMARGIN drfliuli NIL
Thbis specifies tie total line length available for printing. If it is NIL, then the printer asks the output
stream what the line length is.

MISER-WIDTH defaiult 40
Miscr modte printout is triggcrcd if there is less than this amount of width available for printing.

MAJOR-WIDTH defauult 40
I C11 shifting of logical Units will occur if there is less than this amount of width available for printing.

GCIECKRECURS ION default T
If this is T then PRINT checks forcirecilar pointers and abbreviate.% themi appropriately.

GS11OW- ERRORS defihuli NI L
Normallv, GPR IN I does an ERR SE F so that no error which occurs during formnatting can cause an error
in GPR IN I. If this is set to T then you will enter the error handler if any error occurs. Ib is is useful for
debugging.

GFORCE-MORES default T
If this is TI then thing,, are set up so that you get MORE processing all of the time. Otherwise, MORE
processing is suppressed if printing is initiated within 7 lines (if the bottom of the screen.

GSPECIAL- FORMATTERS default NIL
Ib'is holds a list of foninatting fujnctions which are tested for applicability before any other dispatching

-. is done.

GOVERR IDING- LIST- FORMATTERS defaulNIL
Ibis holds a list of formnatting functions which are tested flor applicability to any list which is being
printed before any other dispatching is done on it.

Waters .25- GPRINT

GLIST-FORMATTERS deft ul NIL
'1ibis holds a list of formatting functions which arc tested for applicability to any list which is being
printcd before any other dispatching is done on it unless dispatch was called with a specific suggesting
.of how to format the list. (1ibe difl'ercncc between this and GOVERRIDING-LIST-FORMATTERS is that
these arc applied in fewer places. For example, they will not be tested against the list of bound
variables in a PROG because the format for PROG specifies exactly how this subpart oIf a PROG Should be
formatted.)

GFORMAT property
If the CAR of a list has a value for this property. then the value is called as a formatting function to
format the list. (If none of the above cases apply.)

GAPPLY-FORMAT default: GAPPLY- FORMAT
'Ibis is used as die format for literal LAMBDA applications.

GFN-FORNAT default: GFN- FORMAT
'I'his is used as the default format for fuinction applications.

CaSYMSBOL-CAR-FORNAT de/bult :GITBIOCK
ib1is is used as the deflault format for lists whose CARS are symbols.

GNON-SYMBOL-CAR- FORMAT default : G TB LOCK
'Ibhis is used as the default format for lists whose CARS are not symbols.

:GFORMAT-SELF message
If an instance, entity, or naincd-structure is set up so that it will process this message type, then it is sent
a message in order to format itself. It gets one argument (the object itself) in addition to any arguments
which are supplied by the message sending mechanism.

GARRAY-FORMATTERS defauli NIL
'Ibis holds a list of fornmatting functions which will be tested for applicability to any array being printed
which doesn't take a :GFORMAT-SELF message.

GHUNK-FORMATTERS default NIL
'Ibiis holds a list of formatting fuinctions which will be tested for applicability to any hunk being printed
which doesn't take a :GFORMAT - SELF message.

BRINO-MACROEXPANDED default NIL
If this is T then MACROMEMOized mars will printed out as they appear after expansion. Otherwise they
will be printed out as they appear b efore expansion.

PLP-PROPERTIES default(: FUNCTION :VALUE)
TIhis holds.thc list of values which the fuinction PIP will print out by default. Tlhe defahult specifies that
only dhe fuinction value and value should be printed.

GPRINT -26- Waters

Summary of Formatting Codes
Tbis appendix summarizes the formatting codes which arc available for use in the template supplied to the

macro GF. The template is a string of single character commands. some of which can bc followed by a
parameter. 'i'here are three kinds of parameters:

n- Some commands take a number as a parameter. Ibis number should be an integer optionally
beginning with a "-" and/or ending with a ".". Alternately, it can be omitted in which case a
default value is used.

f - Some commands take a function name as a parameter. Ibis name is an arbitrary symbol possibly
containing ": ". Case does nolt matter. Ibe symbol must be terminated by a blank. Function name
parameters cannot be omitted. They have no default values.

#- This can be used in place of any numeric parameter or any finction name parameter. It indicates
that the next input to GF should be used as the parameter, instead of a literal value.

The commands which can be used in a template are divided into several categories. The first set is used to
parse the stncturc of the arguments to GF so that their parts can be accessed.

[] - *lIis is used to access the internal elements of an item which is a lisL ITe template inside the
brackets refers to the elements of the list. If the item is not a list, then no formatting of it, or
anything inside it, is done. Processing begins by considering each element of this list in turn. As
soon as the list is exhausted, control skips out of the subtemplatc and continues after its end. lhis is
done even if there is mrorc stuff left in te subtemplate. Special code is included to deal with the
possibility of unexpectedly encountering a non-NIL atomic CDR. If this happens it is automatically
formatted to appear after a ". ". [] also produces special code to deal with length abbreviation.
'IhIey only way to get it automatically is to use Q].

-(Periud) 'Ibis is valid only inside []. It specifies that the next item is the whole sublist left to
process by [] rather than its CAR. For example, (GF "['..]" (1 2)) is the same as
(GF "*-*" 1 '(2)).

Note that when a ." is used, normal checking for the end ofthe list in the [] is suppressed. For
example, (GF "[. [*. " ' (1)) is equivalent to (GF "._-" I NIL). Th1ie NIL at the end of the
list is explicitly picked up by the ". ", and a blank will be printed at the end. 'lbis happens even
though the [] template would normally have terminated right alter the first ,.

< > - 'Ibis can only be used directly inside [] (or ()). It specifies an indefinite repeat block. Ibis is
used to specify a template fir a list of unknown length.

Waters -27- GPRINT

'hc next set of commands are used to specify how individual items arc printed ouL

I - Ignore the corresponding item.

literal' - Print the indicated literal using PRINC and do not count it as one of the items printed from
the point of view of length abbreviation. Note that in the literal " '' stands for "".

- This specifics that GD[SPATCF should be called in order to format the corresponding item.

%]'-'Ibis specifics that the function f should be called in order to format the corresponding item.
(Note if f is # then the argument which is used as the function follows the argument which is
lbnnatted.)

S f- (Dollar sign) This command specifies that GDISPATCH should be called in order to fonnat die
corresponding item, but that the ftunction f should he passed to GDISPATCH is a suggestion of how
to format the item. (Note if J is 0 then die argument which is used as the function follows the
argument which is formatted.) 'JThe difference between Sf and %f is that with Sf GDISPATCH gets
control. As a result, if the item is not a list. or if some function on GOVERRIDING-LIST-
FORMATTERS formats it. then the finction f will not get used.

$/"sublemplttie/" - In addition to the name of a function, the parameter to S can be a literal template
which is converted into a function to use. (Note that die quotes have tw be slashified in order to
read in inside a quoted string.) 'Ibc formatting function produced is compiled out of line. As a
result, if there is a # format code in it, the argument to GF that this refers to will be compiled out of
line. In order for this to work aly variables this relrs to must be declared special.

The next commands are used to specify the nested structure of the output (which nccd not be the same as that

of the input).
{, -lfis indicates a substructural unit in the outpuL The parameter specifies what indentation to

use when printing out the items inside die substructure if the substructure cannot be printed on a
single line. (If the indentation is specified to he zero then the substructure is not counted as
increasing the dcpth fron the point of view of depth abbreviation.) The default parameter value is
calculated as the sum of the lengths of the first thing printed in the substructure, and any literals
before it and any spaces after it.

+? - (Plus) This specifies a change in indentation. ihe indentation level in the current substructure is
increnlentoed by it which can be negative. Note that this will not take effect until the next line. For
example, the template "(*-.-+2.-.)" does not increase the indentation until the fourth item is
printed while "(.-*.+2-.-.)" prints the third item atan increased indentation.

(it) - 'Ilis is a useful abbreviation in the situation where the nested structure of the output is the same
as the nested structure of the input, and when you want to print parentheses around the structure. It
is an abbreviation for (n' (I) '. Additionally, if the (n) is nested more directly inside E)
than inside $ then it is treated as an abbreviation fbr $/"Qn'(a []')/". In other words. if the
item whose fornnat is being specified by the (n) was not passed through GDISPATCH for
dispatching then the $ format code is used to force the list to dispatch throngh GDISPATCH. 'Ibis
prevents the format from blowing up when the item is not a lisL (Note the comment about 0 inside
$/" /" above.)

(iniimn i m ml I ~l ~ m

GPRINT -28- Waters

'l'hc next set of commands specifics spacing and where and when carriage returns should be printed. Note
that there is actually a complete separation between these two concepts. ihe format codes used above which
combine the two ideas are abbreviations combining the underlying codes.

-n - (Tildc) Print n (default 1) spaces. (Note that spaces are clidcd if they are the first or last thing on a
line).

Tn -Tab over. Moves to a place where the character position relative to the currtat indentation is
congruent to zero modulo n. (Does not move at all if it does not have to.) When necessary, a
default tab size is calculated based on the length of the other items in the substructure.

A-)o a line break here always.

I - Same as A.
N -)o a line break here if required for normal mode printing. I.e. if and only if the structure

immediately containing this point cannot be printed on a single line.
-n - (Minus) Abbreviation for "~nN" which is what you usually want.

B - Do a line break here if required ffir block mrode printing. This is the same as N except that even if
the immediately containing structure is being broken tip a line break will not be put here as long as
the fillowing structure can be printed on the end of the current line and the prior structure at this
level was printed on a single line.

, n- (Comma) Abbreviation for ".n" which is what you usually want.
n - (Semicolon) Abbreviation for "-lnB" which is what you often want.
M - IX) a line break here if required for miser mode printing. Put a line break here if the containing

structure will not fit on a single line, and the remaining line width available for printing is less than
MISER-WIDTH.

_n -(Underscore) Abbreviation for "-M" which is what you usually want.

The next two formatting codes were not discussed above. They are provided as extra hooks into the
GPH NTing process.

&f- The function f is called with no arguments at this point. Note that function is called during the
formatting process.

E - When the output routine gets to this point in printing, the arg to GF corresponding to the Ii is
EVALed (out of line). This is useful for getting information about the state of the printing process. It
should NOGI be used to print anything out because the output routine will not realize that anything
was printed and its character position calculations will be wrong. Note that the difference between
& and E is the time at which the function evaluation occurs.

'Me characters SPACE, TAB, CR. and LF are all ignored. Any other character Is an error.

k ATE

.L M -1

